

Hannes Hirzel, Univ. of Zürich,
Mary Esther Kropp Dakubu, Univ. of Ghana,
Dorothee Beermann, Jonathan Brindle and Lars
Hellan, NTNU:

“Porting lexicon files from
Toolbox into LKB-grammars:
A case study for a grammar of Ga”

Toolbox-LKB-Link

● The Toolbox lexical database for Ga

● Transformation

● The LKB-TDL file

● Specific problems: Unicode, tone

● Outlook

What is Toolbox?

● An editor and database program for lexical
data

● A corpus building tool
● A morphological annotation tool
● Data is kept in UTF8 encoded textfiles
● Import / Export functions

– Cc - consistent changes tool
● Freeware:
www.sil.org/computing/toolbox

Data format of Toolbox files

● The lexical data is kept in flat file text files.
● The files are encoded in Unicode (UTF8)
● Hierarchies are possible
● As it is 'text only' the file format is

sustainable;
– Still usable in 10 ... 20 years
– Processing the data is easy (Unix command line

tools, Lisp list processing)

Why use Toolbox?

● Lexical data in this format is available

● Editing lexical entries in Toolbox is easier
that in a TDL file

● Toolbox includes a formatting program:
printout of the entries in dictionary form.

Ga

● Kwa language spoken in Ghana

● Printed dictionary available
(ed. Mary-Esther Kropp Dakubu, Univ. of
Ghana)

● Electronic dictionary in Toolbox format with
1700 entries.

How does the Ga lexicon look
like in Toolbox format

● Toolbox format = SFM format /FOSF format
= tagged text

● Each field/ text element is marked with a
preceding tag which begins with a backslash

\lx bú
\ps n
\gn trou
\ge hole ; well

\lx = lexeme
\ps = part of speech
\gn = gloss french
\ge = gloss english

Toolbox: Single entry view

TDL lexicon

bú := noun-lexeme &

[STEM <"bú">,

PHON <"bú">,

ENGL-GLOSS <"hole ; well", "trou">,

SYNSEM.LKEYS.KEYREL.PRED "_bú_n_rel"].

Toolbox export processes

● Export processes may be chained
– The individual process step is simple

● Cf. Unix pipes

Cleaning /
Encoding

Tone TDL
relation

Lexeme
name

What is cc (consistent changes)

● A little language for writing filters like sed or
awk

● Exchange of strings (groups are possible)

– 'aString' > 'anotherString'

● Variables

● Control structures (condition, loop)

Steps (“processes”)

1: Unicode to ASCII encoding
2: Duplicate lexeme field

The duplicate is named '\phon' (phonetics)

3: Eliminate tone
4: Construct TDL type
5: Create unique name for lexeme

(include homograph number in lexeme name)

6: Reformat for TDL

Step 1: Unicode to ASCII

"â" > "aHL"
"ã" > "aN"
"a̰" > "aN"
"á̰" > "aNH"

"ɛ" > "E"
"ɛ́" > "EH"
"ɛ̀" >"EL"
"ɛ̂" > "EHL"

Step 2: Duplicate lexeme field

● Specific for this Ga dictionary

– Duplicate the entry lexeme

– Copy the information into a \phon field

● The lexeme entry is tone marked.

● This step allows elimination of tone in the
lexeme name while keeping the tone
information in the phon field

Result of step 2

\lx buH

\phon buH

\ps n

\gn trou

\ge hole ; well

Step 3: Eliminate tone
information in lexeme field

c ---
group(main)
'\lx ' > '\lx ' c copy what we have found
 c in the input stream (i.e. '\lx') to the
 c output stream
 use(lxGroup) c switch to the other group.

c ---
group(lxGroup)
'H' > '' c H gets replaced by the empty string
 c (i.e. The empty string)
'L' > '' c L: the same
 c when we find that the next field starts,
 c we switch back to the main group.
'\' > '\'
 use(main)

Result of step 3

\lx bu

\phon buH

\ps n

\gn trou

\ge hole ; well

Step 4: Form TDL type

'\ps V' nl > next
'\ps v' nl > dup
 '\tdlType verb-lexeme'
 nl
'\ps N' nl > next
'\ps n' nl > dup
 '\tdlType noun-lexeme'
 nl

Result of step 4

\lx bu

\phon buH

\ps n

\tdlType noun-lexeme

\gn trou

\ge hole ; well

Step 5: Add homograph number
and TDL relation

 ...
 "\tdlRelation "
 '"_'
 out(valueLexeme)
 "_"
 out(valuePartOfSpeech)
 '_rel"'
 ...

Result of step 5

\lx bu
\phon buH
\ps n
\tdlType noun-lexeme
\gn trou
\ge hole ; well
\tdlRelation "_bu_n_rel"

Step 6: Form TDL

Begin > Initialisation
define(output_lexical_entry) > incr(cntNoOfEntries)
 out(valueLexeme)' := '
 out(tdlType)
 ' &' nl
group(main)
'\lx ' > endstore
 do(output_lexical_entry)
 store(valueLexeme)
'\tdlType ' > store(tdlType)

'\tdlRelation ' > store(tdlRelation)
endfile > do(output_lexical_entry)
 endfile

Result of step 6

bu := noun-lexeme &
[STEM <"bu">,
PHON <"buH">,
ENGL-GLOSS <"hole ; well", "trou">,
SYNSEM.LKEYS.KEYREL.PRED "_bu_n_rel"].

What has to be adapted by the
grammar writer

● Selection of fields

● Specification of TDL types

● Specification of TDL relations

Questions: Markup hierarchies
of lexicons

● How should a markup of a lexicon hierarchy
look like?

● Toolbox allows consistency checks (range
sets)

Cleaning the data

● It is easy to view and resort data in Toolbox

Summary

● Automatic acquisition of lexical data from
Toolbox databases is possible

● Process can be fine-tuned by the grammar
writer
– Selection of fields
– TDL types
– TDL relations

● Toolbox is useful for editing large lexical
databases and works with a data format which
is sustainable (tagged text files - UTF8)

Outlook

● Instead of writing a Toolbox export function
one could write an LKB import function

● Alternative Toolbox export function which
generates SQL-insert statements for import
in Postgres or other databases.

● More 'best practice' examples for type
hierarchies needed.

● Using Unicode (UTF8) in LKB will facilitate
working with African languages.

